- Remove duplicate span append + tool call decision logging block (lines 328-426) - Fix _extract_tool_calls_from_response to use getattr() instead of .get() on objects - Fix _calculate_cost to use exact match first, then longest-prefix match (prevents gpt-4o-mini matching gpt-4 pricing) - Fix test mock setup: set return_value BEFORE wrap_openai() so wrapper captures correct original - All 11 OpenAI integration tests + 8 SDK tests passing (19/19)
639 lines
21 KiB
Python
639 lines
21 KiB
Python
"""OpenAI integration for AgentLens.
|
|
|
|
This module provides a wrapper that auto-instruments OpenAI API calls with
|
|
tracing, span creation, decision logging for function/tool calls, and token tracking.
|
|
"""
|
|
|
|
import json
|
|
import logging
|
|
import time
|
|
from functools import wraps
|
|
from typing import Any, Dict, Iterator, List, Optional
|
|
|
|
from agentlens.models import (
|
|
Event,
|
|
EventType,
|
|
_now_iso,
|
|
)
|
|
from agentlens.trace import (
|
|
TraceContext,
|
|
_get_context_stack,
|
|
get_current_span_id,
|
|
get_current_trace,
|
|
)
|
|
|
|
logger = logging.getLogger("agentlens")
|
|
|
|
# Cost per 1K tokens (input/output) for common models
|
|
_MODEL_COSTS: Dict[str, tuple] = {
|
|
"gpt-4": (0.03, 0.06),
|
|
"gpt-4-32k": (0.06, 0.12),
|
|
"gpt-4-turbo": (0.01, 0.03),
|
|
"gpt-4-turbo-2024-04-09": (0.01, 0.03),
|
|
"gpt-4-turbo-preview": (0.01, 0.03),
|
|
"gpt-4o": (0.005, 0.015),
|
|
"gpt-4o-2024-05-13": (0.005, 0.015),
|
|
"gpt-4o-2024-08-06": (0.0025, 0.01),
|
|
"gpt-4o-mini": (0.00015, 0.0006),
|
|
"gpt-4o-mini-2024-07-18": (0.00015, 0.0006),
|
|
"gpt-3.5-turbo": (0.0005, 0.0015),
|
|
"gpt-3.5-turbo-0125": (0.0005, 0.0015),
|
|
"gpt-3.5-turbo-1106": (0.001, 0.002),
|
|
"gpt-3.5-turbo-16k": (0.003, 0.004),
|
|
}
|
|
|
|
|
|
class _MockFunction:
|
|
def __init__(self, n: str, a: str):
|
|
self.name = n
|
|
self.arguments = a
|
|
|
|
|
|
class _MockToolCall:
|
|
def __init__(self, name: str, args: str):
|
|
self.function = _MockFunction(name, args)
|
|
|
|
|
|
class _MockMessage:
|
|
def __init__(self, content: Optional[str], tool_calls_list: List[_MockToolCall]):
|
|
self.content = content
|
|
self.tool_calls = tool_calls_list
|
|
|
|
|
|
class _MockChoice:
|
|
def __init__(self, content: Optional[str], tool_calls_list: List[_MockToolCall]):
|
|
self.message = _MockMessage(content, tool_calls_list)
|
|
|
|
|
|
class _MockUsage:
|
|
def __init__(self):
|
|
self.prompt_tokens: Optional[int] = None
|
|
self.completion_tokens: Optional[int] = None
|
|
self.total_tokens: Optional[int] = None
|
|
|
|
|
|
class _MockResponse:
|
|
def __init__(self):
|
|
self.model: str = "unknown"
|
|
self.choices: List[_MockChoice] = []
|
|
self.usage = _MockUsage()
|
|
|
|
|
|
def _truncate_data(data: Any, max_length: int = 500) -> Any:
|
|
"""Truncate data for privacy while preserving structure."""
|
|
if isinstance(data, str):
|
|
return data[:max_length] + "..." if len(data) > max_length else data
|
|
elif isinstance(data, dict):
|
|
return {k: _truncate_data(v, max_length) for k, v in data.items()}
|
|
elif isinstance(data, list):
|
|
return [_truncate_data(item, max_length) for item in data]
|
|
else:
|
|
return data
|
|
|
|
|
|
def _calculate_cost(
|
|
model: str, prompt_tokens: int, completion_tokens: int
|
|
) -> Optional[float]:
|
|
"""Calculate cost in USD based on model pricing."""
|
|
model_lower = model.lower()
|
|
|
|
if model_lower in _MODEL_COSTS:
|
|
input_cost, output_cost = _MODEL_COSTS[model_lower]
|
|
return (float(prompt_tokens) / 1000.0) * input_cost + float(
|
|
completion_tokens
|
|
) / 1000.0 * output_cost
|
|
|
|
best_match = None
|
|
best_len = 0
|
|
for model_name, costs in _MODEL_COSTS.items():
|
|
if model_lower.startswith(model_name.lower()) and len(model_name) > best_len:
|
|
best_match = costs
|
|
best_len = len(model_name)
|
|
|
|
if best_match:
|
|
input_cost, output_cost = best_match
|
|
return (float(prompt_tokens) / 1000.0) * input_cost + float(
|
|
completion_tokens
|
|
) / 1000.0 * output_cost
|
|
|
|
return None
|
|
|
|
|
|
def _extract_messages_truncated(messages: List[Any]) -> List[Dict[str, Any]]:
|
|
"""Extract and truncate message content."""
|
|
truncated = []
|
|
for msg in messages:
|
|
if isinstance(msg, dict):
|
|
truncated_msg = {"role": msg.get("role", "unknown")}
|
|
content = msg.get("content")
|
|
if content is not None:
|
|
truncated_msg["content"] = _truncate_data(str(content))
|
|
truncated.append(truncated_msg)
|
|
else:
|
|
# Handle message objects
|
|
role = getattr(msg, "role", "unknown")
|
|
content = getattr(msg, "content", "")
|
|
truncated.append({"role": role, "content": _truncate_data(str(content))})
|
|
return truncated
|
|
|
|
|
|
def _extract_content_from_response(response: Any) -> Optional[str]:
|
|
"""Extract content from OpenAI response."""
|
|
if hasattr(response, "choices") and response.choices:
|
|
message = response.choices[0].message
|
|
if hasattr(message, "content"):
|
|
return _truncate_data(str(message.content))
|
|
return None
|
|
|
|
|
|
def _extract_tool_calls_from_response(response: Any) -> List[Dict[str, Any]]:
|
|
"""Extract tool calls from OpenAI response."""
|
|
tool_calls = []
|
|
if hasattr(response, "choices") and response.choices:
|
|
message = response.choices[0].message
|
|
if hasattr(message, "tool_calls") and message.tool_calls:
|
|
for tc in message.tool_calls:
|
|
func = getattr(tc, "function", None)
|
|
name = getattr(func, "name", "unknown") if func else "unknown"
|
|
args_str = getattr(func, "arguments", "{}") if func else "{}"
|
|
call_dict = {"name": name}
|
|
try:
|
|
call_dict["arguments"] = json.loads(args_str)
|
|
except (json.JSONDecodeError, TypeError):
|
|
call_dict["arguments"] = args_str
|
|
tool_calls.append(call_dict)
|
|
return tool_calls
|
|
|
|
|
|
class _StreamWrapper:
|
|
"""Wrapper for OpenAI stream responses to collect chunks."""
|
|
|
|
def __init__(self, original_stream: Any, trace_ctx: Optional[TraceContext]):
|
|
self._original_stream = original_stream
|
|
self._trace_ctx = trace_ctx
|
|
self._chunks: List[Any] = []
|
|
self._start_time = time.time()
|
|
self._model = None
|
|
self._temperature = None
|
|
self._max_tokens = None
|
|
self._messages = None
|
|
self._parent_span_id = get_current_span_id()
|
|
|
|
def set_params(
|
|
self,
|
|
model: str,
|
|
temperature: Optional[float],
|
|
max_tokens: Optional[int],
|
|
messages: List[Any],
|
|
) -> None:
|
|
self._model = model
|
|
self._temperature = temperature
|
|
self._max_tokens = max_tokens
|
|
self._messages = messages
|
|
|
|
def __iter__(self) -> Iterator[Any]:
|
|
return self
|
|
|
|
def __next__(self) -> Any:
|
|
chunk = next(self._original_stream)
|
|
self._chunks.append(chunk)
|
|
return chunk
|
|
|
|
def finalize(self) -> None:
|
|
"""Create span after stream is fully consumed."""
|
|
if not self._chunks:
|
|
return
|
|
|
|
# Build a mock response from chunks
|
|
response = _MockResponse()
|
|
|
|
# Extract model from first chunk
|
|
if hasattr(self._chunks[0], "model"):
|
|
response.model = self._chunks[0].model
|
|
else:
|
|
response.model = self._model or "unknown"
|
|
|
|
# Extract message content and tool calls
|
|
message_content = None
|
|
tool_calls = []
|
|
|
|
for chunk in self._chunks:
|
|
if hasattr(chunk, "choices") and chunk.choices:
|
|
delta = chunk.choices[0].delta
|
|
if hasattr(delta, "content") and delta.content:
|
|
if message_content is None:
|
|
message_content = ""
|
|
message_content += delta.content
|
|
if hasattr(delta, "tool_calls") and delta.tool_calls:
|
|
for tc in delta.tool_calls:
|
|
if hasattr(tc, "function"):
|
|
tc_idx = tc.index if hasattr(tc, "index") else 0
|
|
while len(tool_calls) <= tc_idx:
|
|
tool_calls.append({"name": None, "arguments": ""})
|
|
if hasattr(tc.function, "name") and tc.function.name:
|
|
tool_calls[tc_idx]["name"] = tc.function.name
|
|
if (
|
|
hasattr(tc.function, "arguments")
|
|
and tc.function.arguments
|
|
):
|
|
tool_calls[tc_idx]["arguments"] += tc.function.arguments
|
|
|
|
response.choices = [_MockChoice(message_content, [])]
|
|
|
|
# Extract tool calls as objects
|
|
tool_call_objects = []
|
|
for tc in tool_calls:
|
|
if tc.get("name"):
|
|
try:
|
|
args = tc.get("arguments", "{}")
|
|
if isinstance(args, str):
|
|
args_dict = json.loads(args)
|
|
else:
|
|
args_dict = args
|
|
tool_call_objects.append(
|
|
_MockToolCall(tc["name"], json.dumps(args_dict))
|
|
)
|
|
except json.JSONDecodeError:
|
|
pass
|
|
|
|
response.choices[0].message.tool_calls = tool_call_objects
|
|
|
|
# Build mock usage (can't get exact tokens from stream)
|
|
response.usage.prompt_tokens = None
|
|
response.usage.completion_tokens = None
|
|
response.usage.total_tokens = None
|
|
|
|
# Create the span
|
|
_create_llm_span(
|
|
response=response,
|
|
start_time=self._start_time,
|
|
model=self._model or response.model,
|
|
temperature=self._temperature,
|
|
max_tokens=self._max_tokens,
|
|
messages=self._messages or [],
|
|
parent_span_id=self._parent_span_id,
|
|
trace_ctx=self._trace_ctx,
|
|
)
|
|
|
|
# Close trace context if we created one
|
|
if self._trace_ctx:
|
|
self._trace_ctx.__exit__(None, None, None)
|
|
|
|
|
|
def _create_llm_span(
|
|
response: Any,
|
|
start_time: float,
|
|
model: str,
|
|
temperature: Optional[float],
|
|
max_tokens: Optional[int],
|
|
messages: List[Any],
|
|
parent_span_id: Optional[str],
|
|
trace_ctx: Optional[TraceContext],
|
|
) -> None:
|
|
"""Create LLM span from OpenAI response."""
|
|
from agentlens.models import Span, SpanStatus, SpanType
|
|
|
|
current_trace = get_current_trace()
|
|
if current_trace is None:
|
|
logger.warning("No active trace, skipping span creation")
|
|
return
|
|
|
|
end_time = time.time()
|
|
duration_ms = int((end_time - start_time) * 1000)
|
|
|
|
# Extract token usage
|
|
token_count = None
|
|
cost_usd = None
|
|
if hasattr(response, "usage"):
|
|
prompt_tokens = getattr(response.usage, "prompt_tokens", None)
|
|
completion_tokens = getattr(response.usage, "completion_tokens", None)
|
|
total_tokens = getattr(response.usage, "total_tokens", None)
|
|
|
|
if total_tokens is not None:
|
|
token_count = total_tokens
|
|
|
|
if prompt_tokens is not None and completion_tokens is not None:
|
|
cost_usd = _calculate_cost(model, prompt_tokens, completion_tokens)
|
|
|
|
# Create span
|
|
span_name = f"openai.{model}"
|
|
span = Span(
|
|
name=span_name,
|
|
type=SpanType.LLM_CALL.value,
|
|
parent_span_id=parent_span_id,
|
|
input_data={"messages": _extract_messages_truncated(messages)},
|
|
output_data={"content": _extract_content_from_response(response)},
|
|
token_count=token_count,
|
|
cost_usd=cost_usd,
|
|
duration_ms=duration_ms,
|
|
status=SpanStatus.COMPLETED.value,
|
|
started_at=_now_iso(),
|
|
ended_at=_now_iso(),
|
|
metadata={
|
|
"model": model,
|
|
"temperature": temperature,
|
|
"max_tokens": max_tokens,
|
|
},
|
|
)
|
|
|
|
current_trace.spans.append(span)
|
|
|
|
# Push onto context stack for decision logging
|
|
stack = _get_context_stack()
|
|
stack.append(span)
|
|
|
|
# Log tool call decisions
|
|
tool_calls = _extract_tool_calls_from_response(response)
|
|
if tool_calls:
|
|
from agentlens.decision import log_decision
|
|
|
|
# Try to get reasoning from messages
|
|
reasoning = None
|
|
for msg in reversed(messages):
|
|
if isinstance(msg, dict):
|
|
if msg.get("role") == "assistant":
|
|
reasoning = msg.get("content")
|
|
if reasoning:
|
|
reasoning = _truncate_data(str(reasoning))
|
|
break
|
|
else:
|
|
role = getattr(msg, "role", None)
|
|
if role == "assistant":
|
|
reasoning = getattr(msg, "content", None)
|
|
if reasoning:
|
|
reasoning = _truncate_data(str(reasoning))
|
|
break
|
|
|
|
# Build context snapshot
|
|
context_snapshot = None
|
|
if hasattr(response, "usage"):
|
|
context_snapshot = {
|
|
"model": model,
|
|
"prompt_tokens": getattr(response.usage, "prompt_tokens"),
|
|
"completion_tokens": getattr(response.usage, "completion_tokens"),
|
|
}
|
|
|
|
for tool_call in tool_calls:
|
|
log_decision(
|
|
type="TOOL_SELECTION",
|
|
chosen={
|
|
"name": tool_call.get("name", "unknown"),
|
|
"arguments": tool_call.get("arguments", {}),
|
|
},
|
|
alternatives=[],
|
|
reasoning=reasoning,
|
|
context_snapshot=context_snapshot,
|
|
)
|
|
|
|
# Always pop from context stack
|
|
if stack and stack[-1] == span:
|
|
stack.pop()
|
|
elif stack and isinstance(stack[-1], Span) and stack[-1].id == span.id:
|
|
stack.pop()
|
|
|
|
|
|
def _wrap_create(original_create: Any, is_async: bool = False) -> Any:
|
|
"""Wrap OpenAI chat.completions.create method."""
|
|
|
|
if is_async:
|
|
|
|
@wraps(original_create)
|
|
async def async_traced_create(*args: Any, **kwargs: Any) -> Any:
|
|
# Extract parameters
|
|
model = kwargs.get("model", "gpt-3.5-turbo")
|
|
temperature = kwargs.get("temperature")
|
|
max_tokens = kwargs.get("max_tokens")
|
|
messages = kwargs.get("messages", [])
|
|
stream = kwargs.get("stream", False)
|
|
|
|
parent_span_id = get_current_span_id()
|
|
start_time = time.time()
|
|
|
|
# Handle streaming
|
|
if stream:
|
|
# Create trace if needed
|
|
trace_ctx = None
|
|
if get_current_trace() is None:
|
|
trace_ctx = TraceContext(name=f"openai-{model}")
|
|
trace_ctx.__enter__()
|
|
|
|
try:
|
|
original_stream = await original_create(*args, **kwargs)
|
|
|
|
wrapper = _StreamWrapper(original_stream, trace_ctx)
|
|
wrapper.set_params(model, temperature, max_tokens, messages)
|
|
|
|
return wrapper
|
|
except Exception as e:
|
|
if trace_ctx:
|
|
trace_ctx.__exit__(type(e), e, None)
|
|
raise
|
|
|
|
# Non-streaming
|
|
trace_ctx = None
|
|
if get_current_trace() is None:
|
|
trace_ctx = TraceContext(name=f"openai-{model}")
|
|
trace_ctx.__enter__()
|
|
|
|
try:
|
|
response = await original_create(*args, **kwargs)
|
|
|
|
_create_llm_span(
|
|
response=response,
|
|
start_time=start_time,
|
|
model=model,
|
|
temperature=temperature,
|
|
max_tokens=max_tokens,
|
|
messages=messages,
|
|
parent_span_id=parent_span_id,
|
|
trace_ctx=trace_ctx,
|
|
)
|
|
|
|
# Close trace context if we created one
|
|
if trace_ctx is not None:
|
|
trace_ctx.__exit__(None, None, None)
|
|
|
|
return response
|
|
except Exception as e:
|
|
_handle_error(
|
|
error=e,
|
|
start_time=start_time,
|
|
model=model,
|
|
temperature=temperature,
|
|
max_tokens=max_tokens,
|
|
messages=messages,
|
|
parent_span_id=parent_span_id,
|
|
trace_ctx=trace_ctx,
|
|
)
|
|
raise
|
|
|
|
return async_traced_create
|
|
|
|
else:
|
|
|
|
@wraps(original_create)
|
|
def traced_create(*args: Any, **kwargs: Any) -> Any:
|
|
# Extract parameters
|
|
model = kwargs.get("model", "gpt-3.5-turbo")
|
|
temperature = kwargs.get("temperature")
|
|
max_tokens = kwargs.get("max_tokens")
|
|
messages = kwargs.get("messages", [])
|
|
stream = kwargs.get("stream", False)
|
|
|
|
parent_span_id = get_current_span_id()
|
|
start_time = time.time()
|
|
|
|
# Handle streaming
|
|
if stream:
|
|
# Create trace if needed
|
|
trace_ctx = None
|
|
if get_current_trace() is None:
|
|
trace_ctx = TraceContext(name=f"openai-{model}")
|
|
trace_ctx.__enter__()
|
|
|
|
try:
|
|
original_stream = original_create(*args, **kwargs)
|
|
|
|
wrapper = _StreamWrapper(original_stream, trace_ctx)
|
|
wrapper.set_params(model, temperature, max_tokens, messages)
|
|
|
|
return wrapper
|
|
except Exception as e:
|
|
if trace_ctx:
|
|
trace_ctx.__exit__(type(e), e, None)
|
|
raise
|
|
|
|
# Non-streaming
|
|
trace_ctx = None
|
|
if get_current_trace() is None:
|
|
trace_ctx = TraceContext(name=f"openai-{model}")
|
|
trace_ctx.__enter__()
|
|
|
|
try:
|
|
response = original_create(*args, **kwargs)
|
|
|
|
_create_llm_span(
|
|
response=response,
|
|
start_time=start_time,
|
|
model=model,
|
|
temperature=temperature,
|
|
max_tokens=max_tokens,
|
|
messages=messages,
|
|
parent_span_id=parent_span_id,
|
|
trace_ctx=trace_ctx,
|
|
)
|
|
|
|
# Close trace context if we created one
|
|
if trace_ctx is not None:
|
|
trace_ctx.__exit__(None, None, None)
|
|
|
|
return response
|
|
except Exception as e:
|
|
_handle_error(
|
|
error=e,
|
|
start_time=start_time,
|
|
model=model,
|
|
temperature=temperature,
|
|
max_tokens=max_tokens,
|
|
messages=messages,
|
|
parent_span_id=parent_span_id,
|
|
trace_ctx=trace_ctx,
|
|
)
|
|
raise
|
|
|
|
return traced_create
|
|
|
|
|
|
def _handle_error(
|
|
error: Exception,
|
|
start_time: float,
|
|
model: str,
|
|
temperature: Optional[float],
|
|
max_tokens: Optional[int],
|
|
messages: List[Any],
|
|
parent_span_id: Optional[str],
|
|
trace_ctx: Optional[TraceContext],
|
|
) -> None:
|
|
"""Handle error by creating error span and event."""
|
|
from agentlens.models import Span, SpanStatus, SpanType
|
|
|
|
current_trace = get_current_trace()
|
|
if current_trace is None:
|
|
return
|
|
|
|
end_time = time.time()
|
|
duration_ms = int((end_time - start_time) * 1000)
|
|
|
|
# Create error span
|
|
span_name = f"openai.{model}"
|
|
span = Span(
|
|
name=span_name,
|
|
type=SpanType.LLM_CALL.value,
|
|
parent_span_id=parent_span_id,
|
|
input_data={"messages": _extract_messages_truncated(messages)},
|
|
status=SpanStatus.ERROR.value,
|
|
status_message=str(error),
|
|
started_at=_now_iso(),
|
|
ended_at=_now_iso(),
|
|
duration_ms=duration_ms,
|
|
metadata={
|
|
"model": model,
|
|
"temperature": temperature,
|
|
"max_tokens": max_tokens,
|
|
},
|
|
)
|
|
|
|
current_trace.spans.append(span)
|
|
|
|
# Create error event
|
|
error_event = Event(
|
|
type=EventType.ERROR.value,
|
|
name=f"{span_name}: {str(error)}",
|
|
span_id=span.id,
|
|
metadata={"error_type": type(error).__name__},
|
|
)
|
|
|
|
current_trace.events.append(error_event)
|
|
|
|
# Pop from context stack if needed
|
|
stack = _get_context_stack()
|
|
if stack and isinstance(stack[-1], Span) and stack[-1].id == span.id:
|
|
stack.pop()
|
|
|
|
|
|
def wrap_openai(client: Any) -> Any:
|
|
"""Wrap an OpenAI client to add AgentLens tracing.
|
|
|
|
Args:
|
|
client: The OpenAI client to wrap.
|
|
|
|
Returns:
|
|
The same client instance with chat.completions.create wrapped.
|
|
|
|
Example:
|
|
import openai
|
|
from agentlens.integrations.openai import wrap_openai
|
|
|
|
client = openai.OpenAI(api_key="sk-...")
|
|
traced_client = wrap_openai(client)
|
|
|
|
response = traced_client.chat.completions.create(
|
|
model="gpt-4",
|
|
messages=[{"role": "user", "content": "Hello!"}]
|
|
)
|
|
"""
|
|
original_create = client.chat.completions.create
|
|
|
|
# Wrap synchronous method
|
|
traced_create = _wrap_create(original_create, is_async=False)
|
|
client.chat.completions.create = traced_create
|
|
|
|
# Try to wrap async method if available
|
|
if hasattr(client.chat.completions, "acreate"):
|
|
original_acreate = client.chat.completions.acreate
|
|
traced_acreate = _wrap_create(original_acreate, is_async=True)
|
|
client.chat.completions.acreate = traced_acreate
|
|
|
|
logger.debug("OpenAI client wrapped with AgentLens tracing")
|
|
return client
|