feat: Settings page, DELETE traces endpoint, Anthropic SDK, dashboard bug fixes
- Add /dashboard/settings with SDK connection details, data stats, purge - Add DELETE /api/traces/[id] with cascade deletion - Add Anthropic integration (wrap_anthropic) for Python SDK - Fix missing root duration (totalDuration -> durationMs mapping) - Fix truncated JSON in decision tree nodes (extract readable labels) - Fix hardcoded 128K maxTokens in token gauge (model-aware context windows) - Enable Settings nav item in sidebar
This commit is contained in:
@@ -1 +1,8 @@
|
||||
"""Integration packages for AgentLens."""
|
||||
"""Integration packages for AgentLens.
|
||||
|
||||
Available integrations:
|
||||
|
||||
- ``openai``: Wrap OpenAI clients with ``wrap_openai(client)``.
|
||||
- ``anthropic``: Wrap Anthropic clients with ``wrap_anthropic(client)``.
|
||||
- ``langchain``: LangChain callback handler for tracing.
|
||||
"""
|
||||
|
||||
697
packages/sdk-python/agentlens/integrations/anthropic.py
Normal file
697
packages/sdk-python/agentlens/integrations/anthropic.py
Normal file
@@ -0,0 +1,697 @@
|
||||
"""Anthropic integration for AgentLens.
|
||||
|
||||
This module provides a wrapper that auto-instruments Anthropic API calls with
|
||||
tracing, span creation, decision logging for tool calls, and token tracking.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from functools import wraps
|
||||
from typing import Any, Dict, Iterator, List, Optional
|
||||
|
||||
from agentlens.models import (
|
||||
Event,
|
||||
EventType,
|
||||
_now_iso,
|
||||
)
|
||||
from agentlens.trace import (
|
||||
TraceContext,
|
||||
_get_context_stack,
|
||||
get_current_span_id,
|
||||
get_current_trace,
|
||||
)
|
||||
|
||||
logger = logging.getLogger("agentlens")
|
||||
|
||||
# Cost per 1K tokens (input/output) for common Claude models
|
||||
_MODEL_COSTS: Dict[str, tuple] = {
|
||||
# Claude 3 family
|
||||
"claude-3-opus-20240229": (0.015, 0.075),
|
||||
"claude-3-sonnet-20240229": (0.003, 0.015),
|
||||
"claude-3-haiku-20240307": (0.00025, 0.00125),
|
||||
# Claude 3.5 family
|
||||
"claude-3-5-sonnet-20240620": (0.003, 0.015),
|
||||
"claude-3-5-sonnet-20241022": (0.003, 0.015),
|
||||
"claude-3-5-haiku-20241022": (0.0008, 0.004),
|
||||
# Claude 4 family
|
||||
"claude-sonnet-4-20250514": (0.003, 0.015),
|
||||
"claude-opus-4-20250514": (0.015, 0.075),
|
||||
# Short aliases for prefix matching
|
||||
"claude-3-opus": (0.015, 0.075),
|
||||
"claude-3-sonnet": (0.003, 0.015),
|
||||
"claude-3-haiku": (0.00025, 0.00125),
|
||||
"claude-3-5-sonnet": (0.003, 0.015),
|
||||
"claude-3-5-haiku": (0.0008, 0.004),
|
||||
"claude-3.5-sonnet": (0.003, 0.015),
|
||||
"claude-3.5-haiku": (0.0008, 0.004),
|
||||
"claude-sonnet-4": (0.003, 0.015),
|
||||
"claude-opus-4": (0.015, 0.075),
|
||||
"claude-4-sonnet": (0.003, 0.015),
|
||||
"claude-4-opus": (0.015, 0.075),
|
||||
}
|
||||
|
||||
|
||||
def _truncate_data(data: Any, max_length: int = 500) -> Any:
|
||||
"""Truncate data for privacy while preserving structure."""
|
||||
if isinstance(data, str):
|
||||
return data[:max_length] + "..." if len(data) > max_length else data
|
||||
elif isinstance(data, dict):
|
||||
return {k: _truncate_data(v, max_length) for k, v in data.items()}
|
||||
elif isinstance(data, list):
|
||||
return [_truncate_data(item, max_length) for item in data]
|
||||
else:
|
||||
return data
|
||||
|
||||
|
||||
def _calculate_cost(
|
||||
model: str, input_tokens: int, output_tokens: int
|
||||
) -> Optional[float]:
|
||||
"""Calculate cost in USD based on model pricing."""
|
||||
model_lower = model.lower()
|
||||
|
||||
if model_lower in _MODEL_COSTS:
|
||||
input_cost, output_cost = _MODEL_COSTS[model_lower]
|
||||
return (float(input_tokens) / 1000.0) * input_cost + float(
|
||||
output_tokens
|
||||
) / 1000.0 * output_cost
|
||||
|
||||
best_match = None
|
||||
best_len = 0
|
||||
for model_name, costs in _MODEL_COSTS.items():
|
||||
if model_lower.startswith(model_name.lower()) and len(model_name) > best_len:
|
||||
best_match = costs
|
||||
best_len = len(model_name)
|
||||
|
||||
if best_match:
|
||||
input_cost, output_cost = best_match
|
||||
return (float(input_tokens) / 1000.0) * input_cost + float(
|
||||
output_tokens
|
||||
) / 1000.0 * output_cost
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def _extract_messages_truncated(messages: List[Any]) -> List[Dict[str, Any]]:
|
||||
"""Extract and truncate message content."""
|
||||
truncated = []
|
||||
for msg in messages:
|
||||
if isinstance(msg, dict):
|
||||
truncated_msg = {"role": msg.get("role", "unknown")}
|
||||
content = msg.get("content")
|
||||
if content is not None:
|
||||
if isinstance(content, list):
|
||||
# Anthropic supports content as list of blocks
|
||||
truncated_msg["content"] = _truncate_data(content)
|
||||
else:
|
||||
truncated_msg["content"] = _truncate_data(str(content))
|
||||
truncated.append(truncated_msg)
|
||||
else:
|
||||
# Handle message objects
|
||||
role = getattr(msg, "role", "unknown")
|
||||
content = getattr(msg, "content", "")
|
||||
truncated.append({"role": role, "content": _truncate_data(str(content))})
|
||||
return truncated
|
||||
|
||||
|
||||
def _extract_content_from_response(response: Any) -> Optional[str]:
|
||||
"""Extract text content from Anthropic response.
|
||||
|
||||
Anthropic responses have a ``content`` array with blocks of type
|
||||
``text`` or ``tool_use``.
|
||||
"""
|
||||
if hasattr(response, "content") and response.content:
|
||||
text_parts = []
|
||||
for block in response.content:
|
||||
if hasattr(block, "type") and block.type == "text":
|
||||
text_parts.append(getattr(block, "text", ""))
|
||||
elif isinstance(block, dict) and block.get("type") == "text":
|
||||
text_parts.append(block.get("text", ""))
|
||||
if text_parts:
|
||||
return _truncate_data(" ".join(text_parts))
|
||||
return None
|
||||
|
||||
|
||||
def _extract_tool_calls_from_response(response: Any) -> List[Dict[str, Any]]:
|
||||
"""Extract tool_use blocks from Anthropic response.
|
||||
|
||||
Anthropic tool calls appear as content blocks with ``type: "tool_use"``,
|
||||
containing ``name`` and ``input`` fields.
|
||||
"""
|
||||
tool_calls: List[Dict[str, Any]] = []
|
||||
if hasattr(response, "content") and response.content:
|
||||
for block in response.content:
|
||||
block_type = getattr(block, "type", None) or (
|
||||
block.get("type") if isinstance(block, dict) else None
|
||||
)
|
||||
if block_type == "tool_use":
|
||||
if isinstance(block, dict):
|
||||
name = block.get("name", "unknown")
|
||||
arguments = block.get("input", {})
|
||||
else:
|
||||
name = getattr(block, "name", "unknown")
|
||||
arguments = getattr(block, "input", {})
|
||||
tool_calls.append({"name": name, "arguments": arguments})
|
||||
return tool_calls
|
||||
|
||||
|
||||
class _StreamWrapper:
|
||||
"""Wrapper for Anthropic stream responses to collect events and finalize span."""
|
||||
|
||||
def __init__(self, original_stream: Any, trace_ctx: Optional[TraceContext]):
|
||||
self._original_stream = original_stream
|
||||
self._trace_ctx = trace_ctx
|
||||
self._events: List[Any] = []
|
||||
self._start_time = time.time()
|
||||
self._model: Optional[str] = None
|
||||
self._temperature: Optional[float] = None
|
||||
self._max_tokens: Optional[int] = None
|
||||
self._messages: Optional[List[Any]] = None
|
||||
self._parent_span_id = get_current_span_id()
|
||||
# Accumulated response data from stream events
|
||||
self._text_content: str = ""
|
||||
self._tool_calls: List[Dict[str, Any]] = []
|
||||
self._current_tool: Optional[Dict[str, Any]] = None
|
||||
self._input_tokens: Optional[int] = None
|
||||
self._output_tokens: Optional[int] = None
|
||||
self._response_model: Optional[str] = None
|
||||
self._stop_reason: Optional[str] = None
|
||||
|
||||
def set_params(
|
||||
self,
|
||||
model: str,
|
||||
temperature: Optional[float],
|
||||
max_tokens: Optional[int],
|
||||
messages: List[Any],
|
||||
) -> None:
|
||||
self._model = model
|
||||
self._temperature = temperature
|
||||
self._max_tokens = max_tokens
|
||||
self._messages = messages
|
||||
|
||||
def _process_event(self, event: Any) -> None:
|
||||
"""Process a single stream event to accumulate response data."""
|
||||
event_type = getattr(event, "type", None)
|
||||
|
||||
if event_type == "message_start":
|
||||
message = getattr(event, "message", None)
|
||||
if message:
|
||||
self._response_model = getattr(message, "model", None)
|
||||
usage = getattr(message, "usage", None)
|
||||
if usage:
|
||||
self._input_tokens = getattr(usage, "input_tokens", None)
|
||||
|
||||
elif event_type == "content_block_start":
|
||||
block = getattr(event, "content_block", None)
|
||||
if block:
|
||||
block_type = getattr(block, "type", None)
|
||||
if block_type == "tool_use":
|
||||
self._current_tool = {
|
||||
"name": getattr(block, "name", "unknown"),
|
||||
"arguments": "",
|
||||
}
|
||||
|
||||
elif event_type == "content_block_delta":
|
||||
delta = getattr(event, "delta", None)
|
||||
if delta:
|
||||
delta_type = getattr(delta, "type", None)
|
||||
if delta_type == "text_delta":
|
||||
self._text_content += getattr(delta, "text", "")
|
||||
elif delta_type == "input_json_delta":
|
||||
if self._current_tool is not None:
|
||||
self._current_tool["arguments"] += getattr(
|
||||
delta, "partial_json", ""
|
||||
)
|
||||
|
||||
elif event_type == "content_block_stop":
|
||||
if self._current_tool is not None:
|
||||
# Parse accumulated JSON arguments
|
||||
try:
|
||||
args_str = self._current_tool["arguments"]
|
||||
if isinstance(args_str, str) and args_str:
|
||||
self._current_tool["arguments"] = json.loads(args_str)
|
||||
elif not args_str:
|
||||
self._current_tool["arguments"] = {}
|
||||
except (json.JSONDecodeError, TypeError):
|
||||
pass
|
||||
self._tool_calls.append(self._current_tool)
|
||||
self._current_tool = None
|
||||
|
||||
elif event_type == "message_delta":
|
||||
delta = getattr(event, "delta", None)
|
||||
if delta:
|
||||
self._stop_reason = getattr(delta, "stop_reason", None)
|
||||
usage = getattr(event, "usage", None)
|
||||
if usage:
|
||||
self._output_tokens = getattr(usage, "output_tokens", None)
|
||||
|
||||
def __iter__(self) -> Iterator[Any]:
|
||||
return self
|
||||
|
||||
def __next__(self) -> Any:
|
||||
event = next(self._original_stream)
|
||||
self._events.append(event)
|
||||
self._process_event(event)
|
||||
return event
|
||||
|
||||
def __enter__(self) -> "_StreamWrapper":
|
||||
"""Support context manager protocol for Anthropic streaming."""
|
||||
if hasattr(self._original_stream, "__enter__"):
|
||||
self._original_stream.__enter__()
|
||||
return self
|
||||
|
||||
def __exit__(
|
||||
self,
|
||||
exc_type: Optional[type],
|
||||
exc_val: Optional[BaseException],
|
||||
exc_tb: Optional[Any],
|
||||
) -> None:
|
||||
"""Finalize span and close underlying stream on context manager exit."""
|
||||
if hasattr(self._original_stream, "__exit__"):
|
||||
self._original_stream.__exit__(exc_type, exc_val, exc_tb)
|
||||
self.finalize()
|
||||
|
||||
def finalize(self) -> None:
|
||||
"""Create span after stream is fully consumed."""
|
||||
if not self._events:
|
||||
return
|
||||
|
||||
response_model = self._response_model or self._model or "unknown"
|
||||
|
||||
# Build a mock response object for _create_llm_span
|
||||
mock = _MockResponse()
|
||||
mock.model = response_model
|
||||
mock.text_content = self._text_content or None
|
||||
mock.tool_calls = self._tool_calls
|
||||
mock.stop_reason = self._stop_reason
|
||||
mock.input_tokens = self._input_tokens
|
||||
mock.output_tokens = self._output_tokens
|
||||
|
||||
_create_llm_span(
|
||||
response=mock,
|
||||
start_time=self._start_time,
|
||||
model=self._model or response_model,
|
||||
temperature=self._temperature,
|
||||
max_tokens=self._max_tokens,
|
||||
messages=self._messages or [],
|
||||
parent_span_id=self._parent_span_id,
|
||||
trace_ctx=self._trace_ctx,
|
||||
)
|
||||
|
||||
if self._trace_ctx:
|
||||
self._trace_ctx.__exit__(None, None, None)
|
||||
|
||||
|
||||
class _MockResponse:
|
||||
"""Lightweight object to unify stream-assembled and regular responses."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.model: str = "unknown"
|
||||
self.text_content: Optional[str] = None
|
||||
self.tool_calls: List[Dict[str, Any]] = []
|
||||
self.stop_reason: Optional[str] = None
|
||||
self.input_tokens: Optional[int] = None
|
||||
self.output_tokens: Optional[int] = None
|
||||
# Fake content list for compatibility with extraction helpers
|
||||
self.content: List[Any] = []
|
||||
|
||||
|
||||
def _create_llm_span(
|
||||
response: Any,
|
||||
start_time: float,
|
||||
model: str,
|
||||
temperature: Optional[float],
|
||||
max_tokens: Optional[int],
|
||||
messages: List[Any],
|
||||
parent_span_id: Optional[str],
|
||||
trace_ctx: Optional[TraceContext],
|
||||
) -> None:
|
||||
"""Create LLM span from Anthropic response."""
|
||||
from agentlens.models import Span, SpanStatus, SpanType
|
||||
|
||||
current_trace = get_current_trace()
|
||||
if current_trace is None:
|
||||
logger.warning("No active trace, skipping span creation")
|
||||
return
|
||||
|
||||
end_time = time.time()
|
||||
duration_ms = int((end_time - start_time) * 1000)
|
||||
|
||||
# Extract token usage
|
||||
token_count = None
|
||||
cost_usd = None
|
||||
|
||||
# Handle real Anthropic response
|
||||
input_tokens = getattr(response, "input_tokens", None)
|
||||
output_tokens = getattr(response, "output_tokens", None)
|
||||
|
||||
# Real responses have usage object
|
||||
if input_tokens is None and hasattr(response, "usage"):
|
||||
usage = response.usage
|
||||
input_tokens = getattr(usage, "input_tokens", None)
|
||||
output_tokens = getattr(usage, "output_tokens", None)
|
||||
|
||||
if input_tokens is not None and output_tokens is not None:
|
||||
token_count = input_tokens + output_tokens
|
||||
cost_usd = _calculate_cost(model, input_tokens, output_tokens)
|
||||
|
||||
# Extract content - try helpers first, fall back to mock fields
|
||||
content = _extract_content_from_response(response)
|
||||
if content is None:
|
||||
text_content = getattr(response, "text_content", None)
|
||||
if text_content:
|
||||
content = _truncate_data(str(text_content))
|
||||
|
||||
# Extract tool calls - try helpers first, fall back to mock fields
|
||||
tool_calls = _extract_tool_calls_from_response(response)
|
||||
if not tool_calls:
|
||||
tool_calls = getattr(response, "tool_calls", []) or []
|
||||
|
||||
# Extract stop reason
|
||||
stop_reason = getattr(response, "stop_reason", None)
|
||||
|
||||
# Create span
|
||||
span_name = f"anthropic.{model}"
|
||||
span = Span(
|
||||
name=span_name,
|
||||
type=SpanType.LLM_CALL.value,
|
||||
parent_span_id=parent_span_id,
|
||||
input_data={"messages": _extract_messages_truncated(messages)},
|
||||
output_data={"content": content, "tool_calls": tool_calls or None},
|
||||
token_count=token_count,
|
||||
cost_usd=cost_usd,
|
||||
duration_ms=duration_ms,
|
||||
status=SpanStatus.COMPLETED.value,
|
||||
started_at=_now_iso(),
|
||||
ended_at=_now_iso(),
|
||||
metadata={
|
||||
"model": model,
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens,
|
||||
"stop_reason": stop_reason,
|
||||
},
|
||||
)
|
||||
|
||||
current_trace.spans.append(span)
|
||||
|
||||
# Push onto context stack for decision logging
|
||||
stack = _get_context_stack()
|
||||
stack.append(span)
|
||||
|
||||
# Log tool call decisions
|
||||
if tool_calls:
|
||||
from agentlens.decision import log_decision
|
||||
|
||||
# Try to get reasoning from the assistant's text content
|
||||
reasoning = None
|
||||
if content:
|
||||
reasoning = _truncate_data(str(content))
|
||||
|
||||
# Build context snapshot
|
||||
context_snapshot = None
|
||||
if input_tokens is not None or output_tokens is not None:
|
||||
context_snapshot = {
|
||||
"model": model,
|
||||
"input_tokens": input_tokens,
|
||||
"output_tokens": output_tokens,
|
||||
}
|
||||
|
||||
for tool_call in tool_calls:
|
||||
log_decision(
|
||||
type="TOOL_SELECTION",
|
||||
chosen={
|
||||
"name": tool_call.get("name", "unknown"),
|
||||
"arguments": tool_call.get("arguments", {}),
|
||||
},
|
||||
alternatives=[],
|
||||
reasoning=reasoning,
|
||||
context_snapshot=context_snapshot,
|
||||
)
|
||||
|
||||
# Always pop from context stack
|
||||
if stack and stack[-1] == span:
|
||||
stack.pop()
|
||||
elif stack and isinstance(stack[-1], Span) and stack[-1].id == span.id:
|
||||
stack.pop()
|
||||
|
||||
|
||||
def _handle_error(
|
||||
error: Exception,
|
||||
start_time: float,
|
||||
model: str,
|
||||
temperature: Optional[float],
|
||||
max_tokens: Optional[int],
|
||||
messages: List[Any],
|
||||
parent_span_id: Optional[str],
|
||||
trace_ctx: Optional[TraceContext],
|
||||
) -> None:
|
||||
"""Handle error by creating error span and event."""
|
||||
from agentlens.models import Span, SpanStatus, SpanType
|
||||
|
||||
current_trace = get_current_trace()
|
||||
if current_trace is None:
|
||||
return
|
||||
|
||||
end_time = time.time()
|
||||
duration_ms = int((end_time - start_time) * 1000)
|
||||
|
||||
# Create error span
|
||||
span_name = f"anthropic.{model}"
|
||||
span = Span(
|
||||
name=span_name,
|
||||
type=SpanType.LLM_CALL.value,
|
||||
parent_span_id=parent_span_id,
|
||||
input_data={"messages": _extract_messages_truncated(messages)},
|
||||
status=SpanStatus.ERROR.value,
|
||||
status_message=str(error),
|
||||
started_at=_now_iso(),
|
||||
ended_at=_now_iso(),
|
||||
duration_ms=duration_ms,
|
||||
metadata={
|
||||
"model": model,
|
||||
"temperature": temperature,
|
||||
"max_tokens": max_tokens,
|
||||
},
|
||||
)
|
||||
|
||||
current_trace.spans.append(span)
|
||||
|
||||
# Create error event
|
||||
error_event = Event(
|
||||
type=EventType.ERROR.value,
|
||||
name=f"{span_name}: {str(error)}",
|
||||
span_id=span.id,
|
||||
metadata={"error_type": type(error).__name__},
|
||||
)
|
||||
|
||||
current_trace.events.append(error_event)
|
||||
|
||||
# Pop from context stack if needed
|
||||
stack = _get_context_stack()
|
||||
if stack and isinstance(stack[-1], Span) and stack[-1].id == span.id:
|
||||
stack.pop()
|
||||
|
||||
|
||||
def _wrap_create(original_create: Any, is_async: bool = False) -> Any:
|
||||
"""Wrap Anthropic messages.create method."""
|
||||
|
||||
if is_async:
|
||||
|
||||
@wraps(original_create)
|
||||
async def async_traced_create(*args: Any, **kwargs: Any) -> Any:
|
||||
# Extract parameters
|
||||
model = kwargs.get("model", "claude-3-5-sonnet-20241022")
|
||||
temperature = kwargs.get("temperature")
|
||||
max_tokens = kwargs.get("max_tokens")
|
||||
messages = kwargs.get("messages", [])
|
||||
stream = kwargs.get("stream", False)
|
||||
|
||||
parent_span_id = get_current_span_id()
|
||||
start_time = time.time()
|
||||
|
||||
# Handle streaming
|
||||
if stream:
|
||||
trace_ctx = None
|
||||
if get_current_trace() is None:
|
||||
trace_ctx = TraceContext(name=f"anthropic-{model}")
|
||||
trace_ctx.__enter__()
|
||||
|
||||
try:
|
||||
original_stream = await original_create(*args, **kwargs)
|
||||
|
||||
wrapper = _StreamWrapper(original_stream, trace_ctx)
|
||||
wrapper.set_params(model, temperature, max_tokens, messages)
|
||||
|
||||
return wrapper
|
||||
except Exception as e:
|
||||
if trace_ctx:
|
||||
trace_ctx.__exit__(type(e), e, None)
|
||||
raise
|
||||
|
||||
# Non-streaming
|
||||
trace_ctx = None
|
||||
if get_current_trace() is None:
|
||||
trace_ctx = TraceContext(name=f"anthropic-{model}")
|
||||
trace_ctx.__enter__()
|
||||
|
||||
try:
|
||||
response = await original_create(*args, **kwargs)
|
||||
|
||||
_create_llm_span(
|
||||
response=response,
|
||||
start_time=start_time,
|
||||
model=model,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
messages=messages,
|
||||
parent_span_id=parent_span_id,
|
||||
trace_ctx=trace_ctx,
|
||||
)
|
||||
|
||||
if trace_ctx is not None:
|
||||
trace_ctx.__exit__(None, None, None)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
_handle_error(
|
||||
error=e,
|
||||
start_time=start_time,
|
||||
model=model,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
messages=messages,
|
||||
parent_span_id=parent_span_id,
|
||||
trace_ctx=trace_ctx,
|
||||
)
|
||||
raise
|
||||
|
||||
return async_traced_create
|
||||
|
||||
else:
|
||||
|
||||
@wraps(original_create)
|
||||
def traced_create(*args: Any, **kwargs: Any) -> Any:
|
||||
# Extract parameters
|
||||
model = kwargs.get("model", "claude-3-5-sonnet-20241022")
|
||||
temperature = kwargs.get("temperature")
|
||||
max_tokens = kwargs.get("max_tokens")
|
||||
messages = kwargs.get("messages", [])
|
||||
stream = kwargs.get("stream", False)
|
||||
|
||||
parent_span_id = get_current_span_id()
|
||||
start_time = time.time()
|
||||
|
||||
# Handle streaming
|
||||
if stream:
|
||||
trace_ctx = None
|
||||
if get_current_trace() is None:
|
||||
trace_ctx = TraceContext(name=f"anthropic-{model}")
|
||||
trace_ctx.__enter__()
|
||||
|
||||
try:
|
||||
original_stream = original_create(*args, **kwargs)
|
||||
|
||||
wrapper = _StreamWrapper(original_stream, trace_ctx)
|
||||
wrapper.set_params(model, temperature, max_tokens, messages)
|
||||
|
||||
return wrapper
|
||||
except Exception as e:
|
||||
if trace_ctx:
|
||||
trace_ctx.__exit__(type(e), e, None)
|
||||
raise
|
||||
|
||||
# Non-streaming
|
||||
trace_ctx = None
|
||||
if get_current_trace() is None:
|
||||
trace_ctx = TraceContext(name=f"anthropic-{model}")
|
||||
trace_ctx.__enter__()
|
||||
|
||||
try:
|
||||
response = original_create(*args, **kwargs)
|
||||
|
||||
_create_llm_span(
|
||||
response=response,
|
||||
start_time=start_time,
|
||||
model=model,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
messages=messages,
|
||||
parent_span_id=parent_span_id,
|
||||
trace_ctx=trace_ctx,
|
||||
)
|
||||
|
||||
if trace_ctx is not None:
|
||||
trace_ctx.__exit__(None, None, None)
|
||||
|
||||
return response
|
||||
except Exception as e:
|
||||
_handle_error(
|
||||
error=e,
|
||||
start_time=start_time,
|
||||
model=model,
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
messages=messages,
|
||||
parent_span_id=parent_span_id,
|
||||
trace_ctx=trace_ctx,
|
||||
)
|
||||
raise
|
||||
|
||||
return traced_create
|
||||
|
||||
|
||||
def wrap_anthropic(client: Any) -> Any:
|
||||
"""Wrap an Anthropic client to add AgentLens tracing.
|
||||
|
||||
Instruments ``client.messages.create()`` to automatically capture LLM spans,
|
||||
token usage, cost estimation, and tool-call decisions.
|
||||
|
||||
Supports both sync (``anthropic.Anthropic``) and async
|
||||
(``anthropic.AsyncAnthropic``) clients as well as streaming responses.
|
||||
|
||||
Args:
|
||||
client: An ``anthropic.Anthropic`` or ``anthropic.AsyncAnthropic`` instance.
|
||||
|
||||
Returns:
|
||||
The same client instance with ``messages.create`` wrapped for tracing.
|
||||
|
||||
Example::
|
||||
|
||||
import anthropic
|
||||
from agentlens.integrations.anthropic import wrap_anthropic
|
||||
|
||||
client = anthropic.Anthropic(api_key="sk-...")
|
||||
traced_client = wrap_anthropic(client)
|
||||
|
||||
response = traced_client.messages.create(
|
||||
model="claude-3-sonnet-20240229",
|
||||
max_tokens=1024,
|
||||
messages=[{"role": "user", "content": "Hello!"}]
|
||||
)
|
||||
"""
|
||||
# Detect async client by checking for common async patterns
|
||||
is_async = False
|
||||
try:
|
||||
import asyncio
|
||||
import inspect
|
||||
|
||||
create_method = client.messages.create
|
||||
if inspect.iscoroutinefunction(create_method) or (
|
||||
hasattr(create_method, "__wrapped__")
|
||||
and inspect.iscoroutinefunction(create_method.__wrapped__)
|
||||
):
|
||||
is_async = True
|
||||
except (AttributeError, ImportError):
|
||||
pass
|
||||
|
||||
# Also detect by class name as a fallback
|
||||
client_class_name = type(client).__name__
|
||||
if "Async" in client_class_name:
|
||||
is_async = True
|
||||
|
||||
original_create = client.messages.create
|
||||
traced_create = _wrap_create(original_create, is_async=is_async)
|
||||
client.messages.create = traced_create
|
||||
|
||||
logger.debug("Anthropic client wrapped with AgentLens tracing")
|
||||
return client
|
||||
Reference in New Issue
Block a user